Micro-Power Data Converters

Gabor C. Temes
School of EECS
Oregon State University

Outline

- Micro-power D/A converters:
- Overview of CMOS DACs
- Switched-capacitor DACs
- Quasi-passive two-C DAC
- Quasi-passive pipeline DAC
- Delta-sigma DACs.
- Micro-power A/D converters:
- Overview of CMOS ADCs
- SAR ADC, pipeline SAR ADC
- Multiplexed incremental ADC
- Extended-count hybrid ADC.

Applications

- Battery-powered medical devices (hearing aids, ECG, EEG, etc. sensors, brain stimulators) ;
- Wireless sensor networks for industrial and environmental applications;
- RFID systems.
- Typical target specifications:

DACs: BW up to 20 kHz, ENOB 14-15 bits, 20-bit input ;
ADCs: BW = up to 5 kHz ; ENOB > 12 bits; power < 5 microwatts; input signal amplitude $0.1 \sim 5 \mathrm{mV}$.

Power Saving in Data Converters

- Stages: S/Hs, buffers, comparators, SC blocks.
- S/H: whenever possible, use passive (SC) circuitry; if not, use direct charge transfer (DCT) amplifier stage.
- Buffers: use DCT stage.
- Comparators: use dynamic circuitry.
- SC circuits: use minimally busy circuitry. Reduce dynamic power dissipation.
- Transistor circuits: consider weak inversion operation.
- Logic: consider asynchronous switching.

Classification of DACs

- "Nyquist-rate" DAC: memoryless, one-to-one correspondence between input digital word and output analog sample;
- "Oversampled" DAC: has memory (finite or infinite length), so digital output depends on all previous inputs and outputs.
- Sampling rates may not be very different.

Classification of Nyquist-rate DACs

Classification of Nyquist-rate D/A converters ($T=$ clock period, $N=$ resolution in bits)

Algorithm	Conversion time	Latency (delay)	Resolution (typical)	Usual implementation
Parallel (flash)	T	T	$5-12$ bits	Current steering; voltage division; charge sharing
Pipeline	T	$N T$	$8-12$ bits	Passive SC; active (opamp) stages
Serial	$N T$	$N T$	$8-12$ bits	2-capacitor SC stage
Counting	$2^{N} T$	$2^{N} T$	$15-22$ bits	SC integrator + digital comparator

Nyquist-Rate DACs

- Parallel (flash) DACs: conversion time and latency is T; resolution $N<10$ bits; implementation R-string or R-2R ladder, current sources, switched-capacitor (SC) stage.
- Pipelined DACs: conversion time T; latency $N T$; $N<14$ bits; SC stages.
- Serial DACs: conversion time and latency NT; < 12 bits; 2-C stages.
- Counting DAC: conversion time and latency $=2^{N} . T$; $N<24$ bits; SC or RC integrators.

Oversampled CMOS DACs

- Nyquist-rate vs. oversampled DACs: in oversampled DAC, the word length can be reduced to $1 \sim 5$ bits.
- Mismatch errors can be suppressed in signal band using dynamic element matching.
- High accuracy can be obtained with simple low-power analog circuitry, but complex digital delta-sigma loop and prefilter are required.
- May only be economical for high-resolution lowpower DAC applications.

Nyquist-Rate Parallel DACs

- R-string or R-2R ladder: large area, large mismatch errors, static dissipation - seldom practical in lowpower applications.
- Current-source DAC: large mismatch error, static dissipation - seldom used in slow low-power DACs.
- SC stages: binary-weighted or unary (unit-elementbased) charge redistribution circuits. Unary is more complex, but the glitches are reduced, the monotonicity is guaranteed, and dynamic element matching may be possible.

SC DAC Stages

- Unary SC DAC: monotonic, low glitch.

SC DAC Stages

- Binary SC DAC: non-monotonic, large alitch.

- Both circuits use correlated double sampling for amplifier offset cancellation and for gain boosting.

SC DAC Using DCT Circuit

- Direct charge transfer (DCT) reduces the slewing and settling requirements on the amplifier, since it need not provide current to the feedback branch:

Two-Capacitor DAC

- Simple and fast, but mismatch introduces large spurs.
- Digital dither, correction or mismatch shaping possible.
- Serial DAC; needs N clock periods for N-bit resolution.
- May be time interleaved for Nyquist-rate operation.

Quasi-Passive Cyclic DAC

- Operation for $x(n)=1,0,1,1$:
- Charge redistribution between two equal-valued capacitors

- Serial digital input; LSB first
- Φ_{1} and Φ_{2} are two nonoverlapping clock phases
- Conversion follows equation

$$
V_{\text {out }}=V_{\text {ref }} \sum_{i=1}^{N} b_{i} 2^{-i}
$$

Clock Phase Count
Conversion sequence for input '1101'

Capacitor Mismatch

- Capacitor mismatch effects
- Conversion accuracy limited by capacitor matching accuracy;
- Capacitor mismatch introduces nonlinearity;
- Plots show performance degradation (bottom) in SNDR and SFDR compared with output spectrum from DAC with ideal matching (top)

Mismatch Compensation (1)

- Switching techniques:
- Compensative switching
- The roles of the two capacitor is interchangeable
- The roles of the capacitors can be chosen for every bit
- An algorithm was developed to minimize the conversion error for any digital word

The roles of the two capacitors are interchangeable with additional switches

- The switching pattern is input dependent
- First-order error canceled for 31%
of the input codes; reduced to $1 / 10$
for 48% of the input codes.
[2] Weyten, L.; Audenaert, S., "Two-capacitor DAC with compensative switching," Electronics Letters , vol.31, no.17, pp. 1435-1437, 17 Aug 1995.

Mismatch Compensation (2)

- Switching techniques:
- Complementary switching:
- Digital word fed to DAC twice; once with normal arrangement, once with swapped roles of C_{1} and C_{2}
- Outputs of the two conversions are added (or averaged), actively or passively;
- First-order mismatch compensation, at cost of doubled conversion time.
[3] Rombouts, P.; Weyten, L., "Linearity improvement for the switched-
capacitor DAC," Electronics Letters , vol.32, no.4, pp.293-294, 15 Feb 1996.

Mismatch Compensation (3)

- Switching techniques:
- Input-word-splitting compensative switching
- Compensative switching [2] does not compensate for all input codes
- Split digital input into sum of two digital codes
- The conversion errors reduced using compensative switching for the two new digital inputs
- Final output is the sum of the two conversions
- Needs two sets of 2-C DACs
- Needs analog summation
- Needs sophisticated algorithm for splitting the input word
[4] Rombouts, P.; Weyten, L.; Raman, J.; Audenaert, S., "Capacitor mismatch compensation for the quasi-passive-switched-capacitor DAC," Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on, vol. 45, no.1, pp.68-71, Jan 1998.

Mismatch Compensation (4)

- Switching techniques
- Alternately complementary switching
- Roles of C_{1} and C_{2} are swapped alternately in the first cycle and adopt complementary switching [3] for the second conversion cycle
- Output of the two conversions are summed (or averaged)
- INL improved due to cancellation of major second-order error
- Hybrid switching
- Averaging conversion results of complementary switching and alternately complementary switching
- Smaller INL; fourfold conversion cycles
[5] Poki Chen; Ting-Chun Liu, "Switching Schemes for Reducing Capacitor Mismatch Sensitivity of Quasi-Passive
Cyclic DAC," Circuits and Systems II: Express Briefs, IEEE Transactions on, vol.56, no.1, pp.26-30, Jan. 2009

Mismatch Compensation (5)

- Mismatch shaping
- Using oversampling $\Delta \Sigma$ Modulator
- Digital state machine to control switching sequence of a symmetric two-capacitor DAC
- Improved linearity; better shaping for higher OSR
- Needs 2 N clock cycles for N -bit D/A
[6] Steensgaard, J.; Moon, U.-K.; Temes, G.C., "Mismatch-shaping serial digital-to-analog converter," Circuits and Systems, 1999. ISCAS '99.
Proceedings of the 1999 IEEE International Symposium on, vol.2, no., pp.5-8 vol.2, Jul 1999

Simulated (FFT) performance of the DAC without (a) and with (b) mismatch shaping using a secondorder loop filter

Mismatch Compensation (6)

- Radix-Based Digital Correction
- Compensation in digital domain
- Effectively a radix- $\left(\mathrm{C}_{1} / \mathrm{C}_{2}\right)$ conversion $V_{\text {out }}=V_{\text {ref }}\left(\mathrm{C}_{1} / \mathrm{C}_{2}\right) \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{b}_{\mathrm{i}}\left(1+\mathrm{C}_{1} / \mathrm{C}_{2}\right)^{-1}$
- Assumes known mismatch 2($\left.\mathrm{C}_{1}-\mathrm{C}_{2}\right)$ / $\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)$, or $\mathrm{C}_{1} / \mathrm{C}_{2}$
- ADC-like algorithm predistorts digital input
- Feeds predistorted digital words into the 2-C DAC
- Better performance when DAC resolution is high
- Needs value of mismatch, with high accuracy.
- J. Cao et al., ISCAS 2010

Radix-based digital pre-distortion algorithm flowchart

DAC output spectra plots for (a) uncompensated condition,
(b) alternately complementary switching, (c) radix-based
algorithm and (d) radix-based algorithm with one extra bit.

Two-Capacitor DAC Variations

- Time interleaved 2-C DAC
- Time interleaving 2-C blocks improves throughput speed
- Capacitor mismatch between channels is tolerable

Parallel / Serial
DAC Blocks
DCT Buffer

- Direct-charge-transfer buffer reduces power consumption
- Pipelined quasi-passive cyclic DAC
- Same operation as 2-C DAC
- Information passed on to the last capacitor and DCT output buffer
[7] Wang, F.-J.; Temes, G.C.; Law, S., "A quasi-passive CMOS pipeline
D/A converter," Solid-State Circuits, IEEE Journal of, vol.24, no.6, pp.

(a)
 1752-1755, Dec 1989

Quasi-Passive SC Pipeline DAC

- Serial digital input, Nyquist-rate output;
- Tolerant to switch nonidealities; little glitching
- Capacitor mismatches, DCT buffer errors limit operation to 11-12 bit accuracy.

(a)

(b)

SC Pipeline DAC

Operation:

- Pipelined version of the two-C DAC.
- Bits are entered serially, starting with LSB controlling the charging of C_{1}.
- Charges are shared between adjacent capacitors, rippling down the pipeline.
- After delivering charge, each C is free to receive new one.
- Three clock phases needed.
- Last C voltage is buffered and read out.

Segmented SC Pipeline DAC

- For high accuracy, the pipeline DAC may be combined with a unary MSB DAC, and use dynamic element matching (DEM).
- Unary DAC with DCT buffer:

Quasi-Passive Pipeline DAC Schematic

- Operates from LSB toward MSB
- Pipelined operation by 3-bit segments of each input digital word
- Charges are shared by adjacent capacitors
- For N-bit conversion, it requires $N+1$ equal valued capacitors

Segmented DAC Realization

- Example of 6-bit DAC with $4+2$ segmentation.
- For N bits, it requires $\left(n_{L S B}+1\right)+\left(2^{n_{M S S}}-1\right)$ equal valued capacitors, where $N=n_{L S B}+n_{M S B}$.

Multi-Segmented DAC Realization

- Example of 6-bit DAC with $2+2+2$ segmentation
- For N bits, it requires $\left(n_{L S B}+1\right) C+\left(2^{n_{\text {metemediate }}-1}\right) C+\left(2^{n_{\text {MSB }}}-1\right)\left(2^{n_{\text {mitememediel }}} C\right)$ where $\quad N=n_{L S B}+n_{\text {intermediate }}+n_{M S B}$

Dynamic Element Matching (DEM)

- Multi-Segmented Quasi-Passive Pipeline DAC (7+4+4). 0.1% error.
- Response on the left is without DWA, and on the right is with DWA.

Fig. DWA Effect

$\Delta \Sigma$ DAC Structure

Block diagram of a $\triangle \Sigma$ DAC.

Signal and noise spectra in a $\triangle \Sigma$ DAC.

$\Delta \Sigma$ DAC Examples

Another $\triangle \Sigma$ DAC with merged DAC, DCT and SCF filter functions [15].

Micro-Power Delta-Sigma DACs

- Digital interpolation filter followed by digital D-S loop, and DCT stage performing D/A conversion and prefiltering.
- Low-resolution SC DAC can be simple, low power.
- Easy trade-off between speed, accuracy and power dissipation.
- Passive R-C reconstruction filter may be possible.

Classification of Nyquist-rate ADCs

($T=$ clock period, $N=$ resolution in bits)

Algorithm	Conversion time	Latency (delay)	Resolution (typical)	Usual implementation
Parallel (flash)	T	T	$5-9$ bits	R string, comparators
Pipeline	T	$N T$	$10-14$ bits	SC stages + T/H+ opamps.
Subranging (half- flash)	$2 T$	$2 T$	$8-12$ bits	R strings, comparators
Serial (Succ.appr)	$N T$	$N T$	$7-12$ bits	SC charge redistribution
Counting	$2^{N T}$	$2^{N} T$	$16-24$ bits	SC or CT integrator

Successive-Approximation-Register ADC

- Serial operation: N cycles for N-bit resolution;
- DAC errors limit the accuracy;
- Needs S/H.
- For low speeds, the active blocks dissipate most power.

Various SAR ADCs [3],[4]

- The conventional SAR ADC

- The junction-splitting SAR ADC

Energy Loss in SAR C Arrays

Energy loss considerations:

- Energy required to charge an uncharged capacitor C to voltage V is $\mathrm{E}=\mathrm{C} . \mathrm{V}^{2}$. Half is lost in the switch.
- In SAR ADC, for Vin = 0, the initial step draws an energy 2C. $V_{\text {ref }}^{2}$ Joules, subsequent steps draw comparable amounts from $\mathrm{V}_{\text {ref }}$.
- In the modified array, the first step draws (C/2). $\mathrm{V}_{\text {ref }}{ }^{2}$, the following ones less. The total energy is less than C. $V_{\text {ref }}{ }^{2}$. Mismatch effects may be worse.

Simpler SAR ADC Circuit

- Conventional implementation needs 2^{N} unit capacitors. Reduced cap implementation:

Needs 2 N clock periods for every output word.

Simpler SAR ADC

- Four capacitors and a charge copier can generate all voltages for the SAR ADC.
- In each period, an upper limit, a lower limit and their average value are developed.
- The active block acts as a charge copier during $\Phi_{1}=$ 1 , and as a comparator during $\Phi_{2}=1$.
- Active block needs more power than in other SAR ADCs.

Faster SAR ADC Circuit

- Faster implementation.
- Large spread of Cs and/or Vs.

Faster SAR ADC

- Input capacitor is charged to V_{in}, and then the other capacitors add or subtract charges scaled from C.Vr as controlled by the comparator output bits.
- The voltages are divided by 2 in each step.
- Also possible to use scaled capacitors and unscaled voltages, or scale both C and V.
- Concept shown only.

Junction-Splitting SAR

$$
V_{o u t}=-V_{\text {in }}+\frac{C_{T}}{C_{T}+C_{B}} V_{\text {ref }}
$$

Saves 75% average power compared to a conventional SAR ADC.

- A 3-bit junction-splitting SAR ADC.
- $\mathrm{V}_{\text {out }}$ is determined by the ratio of the capacitances, not by the absolute values.
- All blocks are appended to the capacitor array one-by-one, to generate the desired output voltage.
- Total capacitance: $2^{N \cdot} \cdot C$, where C is the unit capacitance.
- The power consumption for $\mathrm{V}_{\text {in }}=0$ is

$$
V_{r e f}^{2} \cdot C \cdot\left(1-\frac{1}{2^{N}}\right)
$$

* Lee, J.S., and Park, I.C.,: "Capacitor array structure and switch control for energy-efficient SAR analog-to-digital converters", ISCAS, 2008, pp. 236-239

Pipeline SAR ADC

- Provides an output word each clock period - faster.
- Uses passive SC S/Hs and tapered DACs - low power.

*Temes, G.C.: High-accuracy pipeline A/D convertor configuration" El. Letters, 15th Aug. 1985, vol. 21, no. 17, pp. 762-763

Using Junction-Splitting in Pipelined SAR ADC

For 8-bit SAR ADC:

Conventional
256 C, 1X speed, 1X power consumption

Junction splitting
256 C, 1X speed, 0.25X power consumption

Junction-Splitting pipeline $512 \mathrm{C}, 8 \mathrm{X}$ speed, 2X power consumption

* J. Lin, W. Yu and G. C. Temes, "Micro-power time-interleaved and pipelined SAR ADCs," ISCAS 2010

Two-Step Split-Junction SAR ADC

e.g. 6-bit SAR
first 3 bits (MSB)
coarse quantization, the same as split-junction SAR
last 3 bits (LSB)
fine quantization, interpolate with DAC1 and DAC2

Save 8X capacitor area and power consumption.

* W. Yu, J. Lin and G. C. Temes, "Two-Step Split-Junction SAR ADC," ISCAS 2010

Power Consumption vs. Output Digital Code

Comparison of Different SAR ADCs

\(\left.\begin{array}{c|c|c|c|c}\hline Configuration \& \begin{array}{c}Throughput

(word/period)\end{array} \& $$
\begin{array}{c}\mathrm{P}_{\text {Dynamic }} / \mathrm{CV}_{\text {ref }}{ }^{2} \text { for code }\end{array}
$$ \& Total Capacitance\end{array}\right]\)| Number of Switches |
| :---: |
| Conv. Single SAR ADC |
| Energy-efficient Single
 SAR ADC |
| $1 / \mathrm{N}$ |

ADC Architectures

Delta-Sigma ($\Delta \Sigma$) Modulators

[2] R. Schreier and G. C. Temes, Understanding DeltaSigma Data Converters, Piscataway, NJ: IEEE Press/ Wiley, 2005.

$$
\begin{aligned}
& \operatorname{STF}(z)=z^{-1} \\
& \operatorname{NTF}(z)=1-z^{-1}
\end{aligned}
$$

Incremental ADC

Incremental ADCs: $\Delta \Sigma$ ADCs which are reset after each conversion. Properties:

- Flexible trade-off between OSR and power dissipation;
- Limited memory - stable and not tonal;
- Well suited for instrumentation and measurement (I\&M) applications;
- High absolute accuracy possible;
- Allows for accurate gain and offset error correction;
- Easily multiplexed, or operated intermittently.

Incremental ADC - Publications

-First incremental ADC (bipolar, 17-bit resolution, first-order $\Delta \Sigma$ loop)
-R. J. Plassche, "A sigma-delta modulator as an A/D converter," IEEE Trans. on Circuits and Systems, vol. 25, no. 7, pp. 510-514, 1978.
-Further research (CMOS, 16-bit resolution, first-order $\Delta \Sigma$ loop)
-J. Robert, G. C. Temes, V. Valencic, R. Dessoulavy and P. Deval, "A 16-bit low-voltage
A/D converter," IEEE Journal of Solid-State Circuits, vol. 22, no. 2, pp. 157-163, 1987.

- Multi-Stage Noise Shaping (MASH) incremental ADC (two first-order $\Delta \Sigma$ loops)
-J. Robert and P. Deval, "A second-order high-resolution incremental A/D converter with offset and charge injection compensation," IEEE Journal of Solid-State Circuits, vol. 23, no. 3, pp. 736-741, 1988.
-22-bit incremental ADC (third-order $\Delta \Sigma$ loops, 0.3 mW power consumption)
-V. Quiquempoix, P. Deval, A. Barreto, G. Bellini, J. Márkus, J. Silva and G. C. Temes, "A low-power 22-bit incremental ADC," IEEE Journal of Solid-State Circuits, vol. 41, no. 7, pp. 1562-71, 2006.
-Wideband applications (low OSR, 7th-order MASH)
-T. C. Caldwell and D. A. Johns, "An incremental data converter with an oversampling ratio of 3," PhD Research in Microelectronics and Electronics Conference (PRIME), 2006, pp. 125-128.

Incremental ADC - Commercial Chips

Sometimes referred to as charge-balancing $\Delta \Sigma$ ADCs, one-shot $\Delta \Sigma$ ADCs or no-latency $\Delta \Sigma$ ADCs.

- AD77xx product family, Analog Devices 16-bit ~ 24-bit resolution, $1 \sim 10$ channels, $60 \sim 2.5 \mathrm{M} \mathrm{SPS}$
- ADS124x product family, Burr-Brown (Texas Instruments) 24-bit resolution, 4~8 channels, 15 SPS
- CS55xx product family, Cirrus Logic 24-bit resolution, 6.25~3840 SPS
- LTC24xx product family, Linear Technology

16-bit ~ 24-bit resolution, 1~16 channels, 6.9~8000 SPS

Second-Order Incremental ADC

$$
\begin{aligned}
& Y(z)=z^{-2} U(z)+\left(1-z^{-1}\right)^{2} Q(z) \\
& D_{\text {out }}(z)=Y(z) \frac{1}{\left(1-z^{-1}\right)^{2}}=\frac{z^{-2}}{\left(1-z^{-1}\right)^{2}} U(z)+Q(z) \\
& d_{\text {out }}=\frac{M(M-1)}{2} u+q(M) \\
& D=2 d_{\text {out }} / M(M-1) \\
& |\varepsilon|=|D-u|=\left|\frac{2 q(M)}{M(M-1)}\right| \leq \frac{2 V_{\text {ref }}}{(l-1) M(M-1)}
\end{aligned}
$$

Conversion time: $M=\frac{\sqrt{2} \cdot 2^{n / 2}}{\sqrt{l-1}}$ clock
periods; periods;
l : number of quantizer levels.
[1] J. Márkus, "Higher-order incremental delta-sigma analog-to-digital converters," Ph.D. dissertation, Budapest University of Technology and Economics, Department of Measurement and Information Systems, 2005.

Low-Distortion Third-Order Structure (1)

Only quantization noise $Q(z)$ propagates through the integrators.
[3] J. Silva, U.-K. Moon and G. C. Temes, "Low-distortion delta-sigma topologies for MASH architectures", Proc. of the International Symposium on Circuits and Systems, vol. 1, pp. 1144-1147, 2004.

Low-Distortion Third-Order Structure (2)

$$
\begin{aligned}
& \left|u-\frac{3 \cdot 2}{M(M-1)(M-2)} \sum_{m=0}^{M-1} \sum_{==0}^{m-1} \sum_{k=0}^{l-1} d_{o u t}[k] V_{r e f}\right| \leq \frac{3 \cdot 2 \cdot V_{r e f}}{b c_{1} c_{2} M(M-1)(M-2)} \\
& \quad D=\frac{3 \cdot 2}{M(M-1)(M-2)} \sum_{m=0}^{M-1 m-1} \sum_{=0}^{l-1} \sum_{k=0}^{l-1} d_{o u t}[k] V_{r e f} \\
& |\varepsilon|=|u-D| \leq \frac{3 \cdot 2 \cdot V_{r e f}}{b c_{1} c_{2} M(M-1)(M-2)}
\end{aligned}
$$

[1] J. Márkus, "Higher-order incremental delta-sigma analog-to-digital converters," Ph.D. dissertation, Budapest University of Technology and Economics, Department of Measurement and Information Systems, 2005.

Offset Correction in Integrators (1)

[4] V. Quiquempoix, P. Deval, A. Barreto, G. Bellini, J. Márkus, J. Silva and G. C. Temes, "A lowpower 22-bit incremental ADC," IEEE Journal of Solid-State Circuits, vol. 41, no. 7, pp. 156271, 2006.

Offset Correction in Integrators (2)

Generalization of chopper stabilization.

Changing the first opamp polarity according to fractal sequencing

$$
\begin{aligned}
& S_{1}=(+-) \\
& S_{2}=\left(S_{1} \bar{S}_{1}\right)=((+-)(-+)) \\
& \ldots \\
& S_{n}=\left(S_{n-1} \bar{S}_{n-1}\right)
\end{aligned}
$$

If S_{n} is used for n-th order modulator, and the modulator runs for M clock periods, where $M / 2^{n}$ is an integer, the opamp offset will be cancelled.
[4] V. Quiquempoix, P. Deval, A. Barreto, G. Bellini, J. Márkus, J. Silva and G. C. Temes, "A low-power 22bit incremental ADC," IEEE Journal of Solid-State Circuits, vol. 41, no. 7, pp. 1562-71, 2006.

Multiplexed Incremental ADC

Analysis of Incremental ADC

$$
v(n)=\left[s t f^{\prime}(k) * u(k)+s t f^{\prime}(k) * t(k)+n t f^{\prime}(k) * q(k)\right]_{M, n}
$$

$v(n)$ is the single output value obtained in the nth conversion cycle $u(k)$ is the input signal
$t(k)$ is the input-referred thermal noise
$q(k)$ is the quantization noise
$s t f^{\prime}(k)$ is the impulse response of the overall signal transfer function STF(z)H(z)
$n t f^{\prime}(k)$ is the impulse response of the overall noise transfer function $N T F(z) H(z)$
$H(z)$ is the transfer function of the decimation filter

Both $s t f^{\prime}(k)$ and $n t f^{\prime}(k)$ have finite lengths (length=M)
M is the number of clock periods in each conversion cycle
[5] J. Steensgaard, Z. Zhang, W. Yu, A. Sárhegyi, L. Lucchese, D.-I. Kim and G. C. Temes, "Noise-power optimization of incremental data converters," to appear in IEEE Transactions on Circuits and Systems I, 2008.

Noise Optimization in Incremental ADC

To minimize the overall output noise power

$$
\min _{\mathbf{h}} \overline{v_{n}^{2}}=\mathbf{h}^{T} \cdot \mathbf{O} \cdot \mathbf{h}
$$

where

$$
\mathbf{O}=\frac{5 k T}{C_{i n}} \mathbf{S}^{T} \mathbf{S}+\frac{\Delta^{2}}{6} \mathbf{N}^{T} \mathbf{N}
$$

S and N are matrices constructed from the $\operatorname{stf}(k)$ and $n t f(k)$ sequences.

The problem can be formulated as quadratic programming, or solved analytically for the optimum $h(n)$.

The digital filter is FIR; can be realized as a single multiply-accumulate block.
[5] J. Steensgaard, Z. Zhang, W. Yu, A. Sárhegyi, L. Lucchese, D.-I. Kim and G. C. Temes, "Noise-power optimization of incremental data converters," to appear in IEEE Transactions on Circuits and Systems I, 2008.

ADC with Extended Range

- Features of Extended-Range ADC:

1. Incremental $\Delta \Sigma$ modulator operates at oversampled frequency f_{s}.
2. Feedforward topology is used to lower the signal swings.
3. The $2^{\text {nd }}$ stage ADC converts the residual error at the $1^{\text {st }}$ stage output.
4. The $2^{\text {nd }}$ stage may use a SAR ADC, with an operating frequency f_{s} / M.

Operation of Extended-Counting ADC

- After M cycles, $\mathrm{v}_{2}(\mathrm{M})$ becomes

$$
v_{2}(M)=a_{1} \cdot a_{2} \cdot \frac{M(M-1)}{2} \cdot v_{i n}+a_{1} \cdot a_{2} \cdot V_{r e f} \cdot \sum_{j=1}^{M}(M-j) \cdot Y(j)
$$

- $\mathrm{v}_{2}(\mathrm{M})$ is converted by the $2^{\text {nd }}$ ADC and combined with the triangularly-weighted output sequence.
- The overall quantization error is ideally only the quantization error of the SAR ADC:

$$
E_{Q-A D C}=\frac{2}{a_{1} \cdot a_{2} \cdot M \cdot(M-1)} E_{Q-S A R}
$$

Circuit Implementation

SAR ADC

- 11-bit resolution
- dual-capacitor array to reduce the total input capacitance to 3 pF , using a unit cap 48fF
- Conversion in 11 cycles of charge redistribution.

Incremental $\boldsymbol{\Delta \Sigma}$ Modulator

- Clock frequency $=45.2 \mathrm{MHz}$.
- OSR = 45 .

Measured Spectrum

Measured Results

- Signal: -6dB, 110kHz
- peak SNDR is 86.3 dB , SFDR is 97 dB
- ADC achieved 90.1 dB dynamic range.
- 38mW power dissipation (excluding output drivers), out of which 23 mW is consumed in the $1^{\text {st }}$ opamp, 9 mW in the $2^{\text {nd }}$ opamp, 1 mW in the SAR, less than 5 mW in all of the digital blocks

temes@ece.orst.edu
63/68

References on DACs

References

[1] P. J. Naus, E. C. Dijkmans, E. F. Stikvoort, A. J. McKnight, D. J. Holland, and W. Brandinal., "A CMOS stereo 16-bit D/A converter for digital audio," IEEE Journal of SolidState Circuits, vol. 22, pp. 390-395, June 198^{7}
[2] J. C. Candy and A. Huynh, "Double integration for digital-to-analog conversion," IEEE Transactions on Communicaions, vol. 34, no. 1, pp. 77-81, Jamuary 1986.
[3] N. S. Sooch, J. W. Scott, T. Tanaka, T. Sugimoto and C. Kubomura, " 18 -bit stereo D/A converter with integrated digital and analog filters," presented at the 91st convention of the Audio Engineering Society, New York, October 1991, preprint 3113.
[4] X. F. Xu and G. C. Temes, "The implementation of dual-truncation $\Sigma \Delta \mathrm{D} / \mathrm{A}$ converters," Procevdings of the IEEE International Symposium on Circuits and Systems, pp. 597-600, May 1992.
[5] A. Hairapetian, G. C. Temes and Z. X. Zhang, "A multibit sigma-delta modulator with reduced sensitivity to DAC nonlinearity" Elec:nonics Letters, vol. 27, no. 11, pp. 990-991, May 231991.
[6] R. Adams, K. Nguyen and K. Sweetland, "A 113 dB SNR oversampling DAC with segmented noise-shaped scrambling.' IEEE Jorrnal of Solid-State Circuits, vol. 33, no. 12, pp. 1871-1878, December 1998.
[7] S. R. Norsworthy, D. A. Rich and T. R. Viswanathan, "A minimal multibit digital noise shaping architecture," Proceedings of the IEEE Intemational Symposium on Circuits and Systems, pp. 1-5 to 1-8, May 1996.
[8] 1. Fujimori, A. Nogi and T. Sugimoto, "A multibit $\Delta-\Sigma$ audio DAC with $120-\mathrm{dB}$ dynamic range," IEEE Journal of Solid-State Circuits, vol. 35, pp. 1066-1073, August 2000.
[9] D. Gmeneveld et al., "A self-calibration technique for monolithic high-resolution D/A converters," IEEE J. Solid-State Circuits, vol. 24, pp. 1517-1522, Dec. 1989.
[10] A. R. Buggja and B.-S. Song, "A self-trimming 14-b $100 \mathrm{MS} / \mathrm{s}$ CMOS DAC," IEEE Journal of Solid-State Circuits, vol. 35, pp. 1841-1852, Dec. 2000
[1I] U. K. Moon et al. "Switched-capacitor DAC with analogue mismatch correction," Electronics Letters, vol. 35, pp. 1903-1904, Oct. 1999.
[12] M. Rebeschini and P. F. Ferguson, Jr., "Analog Circuit Design for $\Delta \Sigma$ DACs," in S. Norsworthy. R. Schreier and G.C. Temes, Delh-Sigma Data Converters, Sec. 12.2.3. IEEE Press, 1997.
[13] J.A.C. Bingham, "Applications of a direct-transfer SC integrator," IEEE Trunsactions on Circuits and Systems, vol. 31. pp. 419-420, Apr 1984.
[14] See, e.g., R. Schaumann and M.E. Van Valkenburg, Design of Analog Fifters, pp. 161-163, Oxford University Press, 2001
[15] M. Annovazzi et al, "A low-power $98-\mathrm{dB}$ multibit andio DAC in a standard $3.3-\mathrm{V} 0.35-\mu \mathrm{m}$ CMOS technology" IEEE Journal of Solid-State Circuits, vol. 37, pp. 825-834, July 2002.
temes@ece.orst.edu

References on ADCs

[1] J. Márkus, "Higher-order incremental delta-sigma analog-to-digital converters," Ph.D. dissertation, Budapest University of Technology and Economics, Department of Measurement and Information Systems, 2005.
[2] R. Schreier and G. C. Temes, Understanding Delta-Sigma Data Converters, Piscataway, NJ: IEEE Press/ Wiley, 2005.
[3] J. Silva, U.-K. Moon and G. C. Temes, "Low-distortion delta-sigma topologies for MASH architectures", Proceedings of the International Symposium on Circuits and Systems, vol. 1, pp. 1144-1147, 2004.
[4] V. Quiquempoix, P. Deval, A. Barreto, G. Bellini, J. Márkus, J. Silva and G. C. Temes, "A low-power 22-bit incremental ADC," IEEE Journal of Solid-State Circuits, vol. 41, no. 7, pp. 1562-71, 2006.
[5] J. Steensgaard, Z. Zhang, W. Yu, A. Sárhegyi, L. Lucchese, D.-I. Kim and G. C. Temes, "Noise-power optimization of incremental data converters," to appear.
[6] G.C. Temes, "High-accuracy pipeline ADC configuration," Electron. Lett., vol. 21, no.17, pp. 762-763, Aug. 1985
[7] J.L. McCreary, P.R. Gray, "All-MOS charge distribution analog-to-digital conversion techniques - Part I," IEEE J. Solid-State Circuits, vol. 10, no. 6, pp. 371-379, Dec. 1975.
[8] J.-S. Lee and I.-C. Park, "Capacitor array structure and switch control for energy-efficient SAR ADCs," in Proc. IEEE Int. Symp. Circuits Syst., 2008, pp. 236-239.
[9] J. Craninckx, G. Van der Plas, "A 65fJ/Conversion-Step 0-to-50MS/s 0-to-0.7mW 9b Charge-Sharing SAR ADC in 90nm Digital CMOS," in Proc. IEEE Int. Solid-State Circuits Conf., 2007, vol.1, pp. 246-247.
[10] Kyehyung Lee, Jeongseok Chae, M. Aniya, K. Hamashita, K. Takasuka, S. Takeuchi, G.C. Temes, " A Noise-Coupled Time-Interleaved Delta-Sigma ADC With 4.2 MHz Bandwidth, -98 dB THD, and 79 dB SNDR," IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2601-2612, Dec. 2008.
[11] V. Gianninni et al., "An 820uW 9b 40MS/s noise-tolerant dynamic-SAR ADC in 90nm digital CMOS," ISSCC Dig. Tech. Papers, PP. 238-239, feb. 2008
[12] S.-W. Chen and R. Brodersen, "A 6b 600MS/s 5.3 mW asynchronous ADC in 0.12 um CMOS"

References on Extended Counting ADCs

[1] A. Agah et al., "A High-Resolution Low-Power Oversamplig ADC with Extended-Range for Bio-Sensor Arrays", 2007 Symposium on VLSI
[2] J. Markus, J. Silva and G.C. Temes, "Theory and applications of incremental delta-sigma converters, "IEEE TCAS-I, Vol. 51, No. 4, pp 678-690, Apr. 2004
[3] J. De Maeyer et al., "A double-sampling extended-counting ADC,"IEEE J. Solid-State Circuits, vol. 39, pp. 411-418, Mar. 2004.

